
1. Introduction
With the effects of climate change expected to intensify through the 21st century, urgent action is needed to reduce 
humanity's dependence on fossil fuels (IPCC, 2018). Carbon dioxide (CO2) is a greenhouse gas (GHG) emitted 
from the combustion of fossil fuels and is the main driver behind rising global temperatures (IPCC, 2013). Given 
that half of anthropogenic CO2 is emitted from urban areas (Roest et al., 2020), cities will play a pivotal role 
towards decarbonization efforts. Therefore, quantifying CO2 emissions at the city-scale will be important for 
determining whether cities are meeting CO2 decarbonization targets (Ciais et al., 2014; Gurney et al., 2015; Hsu 
et al., 2019).

Quantifying CO2 emissions is an inherently difficult task since directly measuring emissions at the urban scale 
is challenging. Therefore, bottom-up approaches like emission inventories are often used to estimate CO2 emis-
sions. Emission inventories are constructed using well-established protocols and standards that combine activity 
data and emission factors across a variety of scales (Gurney et al., 2020, 2021). While emission uncertainties 
at the national scale are relatively low (<10%), these uncertainties are far greater at regional (∼20%) and local 
scales (50%–250%) and are most pronounced in urban areas (Gately & Hutyra, 2017). For cities where CO2 meas-
urements are available, CO2 concentrations can be used to back-calculate emissions. This method is referred to 
as a “top-down” modeling approach. Observations can also help constrain existing emission inventories through 
inverse models. Inverse modeling approaches are often referred to as a “hybrid” method where observations adjust 
a first guess emission estimate, usually provided by an emission inventory (Nisbet & Weiss, 2010). Hybrid mode-
ling approaches have been widely used to constrain emissions for cities across the globe, including Paris (Breon 
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et al., 2015; Staufer et al., 2016), Indianapolis (Lauvaux et al., 2016; Oda et al., 2017), Cape Town (Nickless 
et al., 2018), the San Francisco Bay Area (Turner et al., 2020), New York City (Pitt et al., 2022), Washington DC/
Baltimore (Yadav et al., 2021), Los Angeles (Yadav et al., 2021), and Salt Lake City (SLC; Mallia et al., 2020). 
These studies used a variety of CO2 sampling strategies including ground-based CO2 monitoring sites (Nickless 
et al., 2018; Turner et al., 2020; Yadav et al., 2021), tall towers (Breon et al., 2015; Lauvaux et al., 2016; Staufer 
et al., 2016), aircraft measurements (Pitt et al., 2022), ground-based mobile measurements (Mallia et al., 2020), 
and satellite observations (Oda et al., 2017).

While inverse models have been used to constrain emission estimates for cities, until recently, there has been limited 
work determining whether top-down and hybrid modeling approaches can detect rapid changes in CO2 emissions. 
During the spring of 2020, governments around the world utilized non-pharmaceutical intervention strategies such 
as “lockdowns” to slow the spread of the coronavirus disease 2019 (COVID-19). These lockdowns dramatically 
reduced travel and resulted in more people working from home. Traffic reductions during the height of the lockdown 
varied from 30% to 75% depending on the city and region (Gensheimer et al., 2021). On a global scale, the COVID-
19 lockdowns in 2020 resulted in annual CO2 emission reductions of 7% relative to 2019 (Le Quéré et al., 2021). 
The COVID-19 lockdown provided a unique opportunity to determine whether hybrid modeling approaches could 
identify changes in urban CO2 emissions at the city-scale based on observed differences in CO2 during the lock-
down period. On average, major metropolitan areas observed emission reductions during the COVID-19 lockdown 
that ranged between 30% and 55% (Lian et al., 2022; Nalini et al., 2022; Turner et al., 2020; Yadav et al., 2021) 
depending on the city. Reductions in traffic were thought to be the primary driver in emission reductions in Paris 
and the San Francisco Bay Area during the COVID-19 lockdown (Lian et al., 2022; Turner et al., 2020). It is 
also suspected that disruptions in the industrial/manufacturing sector may have also contributed to non-negligible 
emission reductions in Los Angeles. However, quantifying emission changes in these sectors is challenging with-
out reliable activity data (Yadav et al., 2021). Given uncertainties surrounding atmospheric transport, instrument 
uncertainties, and background estimates of CO2, it was suggested that top-down modeling approaches are limited 
to detecting emission reductions greater than 20% for urban areas (Lian et al., 2022). Network density was also 
highlighted as a factor that may limit urban-scale mapping of emission adjustments (Nalini et al., 2022). However, 
alternative observation techniques such as mobile-based measurement platforms have been shown to provide more 
detailed emission adjustments that can resolve city-scale emission patterns (Mallia et al., 2020).

In this study, we quantify the impacts of the COVID-19 lockdown on emissions across the Salt Lake Valley (SLV). 
The SLV is situated in northern Utah and is bounded by two large mountain ranges on the east and west sides, while 
the Great Salt Lake is located to the northwest (Figure 1). Downtown SLC is anchored to the northeastern part of the 
valley while the rest of SLC and its suburbs encompass the remaining part of the valley. Unlike other cities used to 
investigate emission reductions during the COVID-19 lockdown, the SLV is a medium-sized metropolitan area with 
a population of just over 1 million people and emits an order of magnitude less of CO2 relative to larger cities like Los 
Angeles, San Francisco, and Washington DC/Baltimore (Gurney et al., 2020). Therefore, determining whether CO2 
emissions reductions are traceable for smaller cities and metropolitan areas is still an outstanding question. It is also 
worth noting that COVID-19 lockdown measures in SLC were less stringent relative to other cities across the U.S 
(Hallas et al., 2021), which suggests that emission reductions would be more difficult to detect. The SLV is home to 
two CO2 networks. The first network includes in situ measurements collected at 5 sites located across the SLV, and a 
background site situated on the top of an adjacent mountain (Lin et al., 2018). The second network consists of a CO2 
instrument mounted on top of a light-rail train (aka “TRAX”) that traverses the SLV (Mitchell, Crosman, et al., 2018).

Here, we used a Bayesian Inverse model to constrain emissions for the SLV for a non-COVID-19 time period 
(spring 2019) and during the first COVID-19 lockdown (spring 2020). This framework was used to quantify valley 
wide emission reductions and to identify areas and sectors where CO2 emission reductions were the greatest. The 
Methodology (Section 2) describes the inverse model configuration, the measurements used in this analysis, and 
other model inputs such as emissions and emission uncertainties. Section 3 analyzes the inverse model results. 
The summary section (Section 4) highlights major findings from this study and identifies areas for future work.

2. Methodology
This section describes the methodology used to quantify the impacts of the COVID-19 lockdown on CO2 emis-
sions across the SLV. First, the mathematical framework used to constrain emissions across the SLV, that is, a 
Bayesian inverse model, is introduced in Section 2.1. This is followed up by Sections 2.2–2.5, which describes 
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the various inputs needed to run the inverse model analysis such as anthro-
pogenic emissions, biospheric fluxes, the atmospheric transport model, and 
CO2 observations. Section 2.6 describes the general inverse model setup and 
configuration, while also providing details on how different model inputs 
were synthesized together to generate an inverse analysis for 2019 and then 
2020.

2.1. Bayesian Inverse Model

Bayesian inverse models are commonly used tools to provide a top-down esti-
mate of anthropogenic emissions of CO2 by synthesizing prior information 
such as an emission inventory and observed concentrations of CO2. An opti-
mized estimate of anthropogenic emissions of CO2, which will be referred 
to as the posterior emissions (𝐴𝐴 𝐴𝐴𝐴 ), can be obtained by solving a cost function 
that incorporates sources of uncertainty and deviations between atmospheric 
observations and a prior emission inventory (Enting, 2002; Tarantola, 1987):

�̂�𝑠 = 𝑠𝑠𝑝𝑝 + (HQ)
T
(HQH

T
+𝑅𝑅)

−1
(𝑧𝑧 − H𝑠𝑠𝑝𝑝) 

The prior or “first-guess” emission estimate (𝐴𝐴 𝐴𝐴𝑝𝑝 ) is defined here as a state 
vector with length of m, equal to the number of grid cells multiplied by the 
number of timesteps. The prior emission inventory used for the inverse anal-
ysis is discussed further in Sections 2.3 and 2.6. The Jacobian matrix (𝐴𝐴 𝐴𝐴 ) 
describes the spatiotemporal influence of each grid cell in our study domain 
for each observed CO2 enhancement (𝐴𝐴 𝐴𝐴 ). 𝐴𝐴 𝐴𝐴 has dimensions of n x m, where 

n is the number of observations, and is estimated using atmospheric footprints generated from atmospheric trans-
port model simulations (see Section 2.3). For this study, 𝐴𝐴 𝐴𝐴 was defined as the observed enhancement of CO2 due 
to anthropogenic emissions within the SLV and has dimensions of n. The observations used to estimate 𝐴𝐴 𝐴𝐴 are 
reviewed in Section 2.2, while Section 2.6 describes how the enhancement is calculated from the CO2 observa-
tions. The prior covariance matrix (𝐴𝐴 𝐴𝐴 ) has dimensions of m x m and describes the prior emission uncertainty and 
the spatiotemporal correlation of these uncertainties. More details behind the computation of 𝐴𝐴 𝐴𝐴 can be found 
in the Supporting Information S1 (Text S1). The final variable in the cost function is the model-data mismatch 
matrix (𝐴𝐴 𝐴𝐴 ), which defines model-data uncertainties related to atmospheric transport and observed measurements, 
including contributions from biospheric and background CO2. The 𝐴𝐴 𝐴𝐴 matrix has dimensions of n x n. More details 
behind the definition of 𝐴𝐴 𝐴𝐴 , the different error terms, and the estimate of these terms are provided in the Support-
ing Information S1 (Text S2).

In summary, the objective of the Bayesian inverse model utilized here is to adjust the prior emissions inventory 
𝐴𝐴 𝐴𝐴𝑝𝑝 based on deviations between observed (𝐴𝐴 𝐴𝐴 ) and model-predicted CO2 enhancements (𝐴𝐴 𝐴𝐴𝐴𝐴𝑝𝑝 ) as defined by the 

term (𝐴𝐴 𝐴𝐴 −𝐻𝐻𝐻𝐻𝑝𝑝 ). The remaining term on the right-hand side 𝐴𝐴 (HQ)
T
(HQH

T
+ 𝑅𝑅)

−1 determines how much the prior 
should be adjusted for any given grid cell within 𝐴𝐴 s𝑝𝑝 based on prior emission uncertainties and errors prescribed by 
the model-data mismatch matrix. For example, if emission uncertainties are large and errors prescribed by 𝐴𝐴 𝐴𝐴 are 
small, this gives the inverse model more flexibility to adjust the prior emissions 𝐴𝐴 𝐴𝐴𝑝𝑝 based on deviations between 
the observations and model-predicted concentrations of CO2. The ability for the inversion to adjust the prior emis-
sion estimate will be limited if the model-data mismatches are large, the emissions have low uncertainty, and/or 
the deviations between the observed and modeled CO2 concentrations are small.

2.2. Observations

Measurements from the Utah Urban Carbon Dioxide Network (UUCON) and a CO2 instrument installed on a light-
rail train car (TRAX) were used to estimate CO2 concentrations across the SLV (Figure 1). The UUCON network, 
which is located within the SLV, is one of the world's longest running urban CO2 networks (Lin et al., 2018). The 
UUCON network consist of 5 active stations that sample a variety of urban typologies (Figure 1). A sixth site, 
which is designated as Hidden Peak (HDP), is situated near the top of a nearby mountain with an elevation of 
3,351-mASL and is ∼20-km to the southeast of the SLV. The UUCON sites are instrumented with high-precision, 

Figure 1. A map showing the Salt Lake Valley, the population density (brown 
shading), non-mobile CO2 measurements sites (black triangles), and the TRAX 
Red and Green lines (green and red lines). The gray shaded line represents 
sections of the Red and Green lines that run through downtown SLC.
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LiCOR 6262 or Los Gatos Research (LGR) ultraportable GHG instruments, which are calibrated with reference 
tanks traceable to the World Meteorological Organization's calibration scales (Bares et al., 2019; Mitchell, Lin, 
et al., 2018; Pataki et al., 2003).

A TRAX light-rail train car was outfitted with an LGR ultraportable GHG analyzer, which transects the SLV 
semi-continuously between 05:00 to 23:00 LST (Figure 1). The instrumented train car cycles between the TRAX 
Red and Green lines every 2–3 days. The Red and Green light rail trains take approximately 61 and 47 min to 
traverse their respective routes. Measurements of CO2 from TRAX have a sampling frequency of 1 s, which were 
resampled to equally spaced points (∼35-m) along each of the transect lines (Mitchell, Crosman, et al., 2018). 
Explicit details behind the TRAX instrumentation setup, data calibration, and quality control assurance/control 
are described in Mitchell, Crosman, et al. (2018). Measurements along the TRAX line were averaged into 2-km 
segments, following recommendations by Mallia et al. (2020), which found that TRAX observations within 2-km 
bins were correlated with each other. For the TRAX Red and Green lines, this binning procedure resulted in 32 
locations where CO2 measurements are collected in the SLV.

The HDP site was used to estimate background concentrations of CO2 for the SLV (Fasoli et al., 2018; Mallia 
et al., 2020; McKain et al., 2012; Mitchell, Lin, et al., 2018). The HDP site was established by the National Center 
of Atmospheric Research (Stephens et al., 2011) and maintenance of the site was taken over by the University of 
Utah and the UUCON network during the fall of 2016 (Bares et al., 2019). For this analysis, a 2-day running mean 
was used to smooth diurnal variability of CO2 at HDP. Smoothed HDP data was used to represent background 
concentrations of CO2.

2.3. Atmospheric Modeling

Backward trajectories from the Stochastic Time Inverted Lagrangian Transport model (STILT; Lin et al., 2003), 
which was recently merged with HYSPLIT (HYSPLIT-STILT; Loughner et al., 2021), were used to estimate 
the atmospheric footprint for each CO2 measurement. The latest version of HYSPLIT v5.0.0 takes advantage of 
STILT's vertical turbulence scheme, which limits well-mixed backward trajectories from accumulating in regions 
with low turbulence. This version includes other STILT features such as treating boundary layer turbulence as 
a stochastic process (Lin et al., 2003). Lagrangian Particle Dispersion models like HYSPLIT-STILT have been 
widely used to carry out urban-scale inverse analyses (Kunik et al., 2019; Mallia et al., 2020; Pitt et al., 2022; 
Turner et al., 2020). The atmospheric footprint can be used to measure the sensitivity of concentration changes at 
a given location to upwind surface fluxes. The footprint (f) can be defined through the following:

𝑓𝑓 (x𝑟𝑟, t𝑟𝑟| x𝑖𝑖, y𝑗𝑗 , t𝑚𝑚) =
𝑚𝑚air

ℎ𝜌𝜌(𝑥𝑥𝑖𝑖, 𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑚𝑚)

1

𝑁𝑁tot

𝑁𝑁 tot∑

𝑝𝑝=1

∆𝑡𝑡𝑝𝑝,𝑖𝑖,𝑗𝑗,𝑝𝑝 

where mair is defined as the molar mass of air (28.97 g mol −1), and 𝐴𝐴 𝜌𝜌 is average density of HYSPLIT-STILT 
trajectories below height h. Ntot is the total number of backward trajectories within the trajectory ensemble, while 

𝐴𝐴 ∆𝑡𝑡𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the total time that trajectories spend below the boundary layer height (h) at location xi, yj, tm. An ensem-
ble of 1,000 backward trajectories were used to construct the footprint for each receptor defined in this study. An 
ensemble number of 1,000 trajectories has been shown to limit run-to-run variability in trajectory model simula-
tions (Mallia et al., 2015). Atmospheric footprints from HYSPLIT-STILT were output on a grid with 0.01 × 0.01° 
spacing and used to construct the spatiotemporal influence matrix (𝐴𝐴 𝐴𝐴 ) for each observation. HYSPLIT-STILT 
footprints were convolved with emission fluxes to estimate CO2 enhancements at each receptor.

Mass-coupled velocity fields from the Weather Research and Forecast model v4.2 (WRF; Skamarock et al., 2019) 
were used to drive HYSPLIT-STILT backward trajectories. Utilizing mass-coupled velocity fields instead of instan-
taneous winds from WRF improves mass conservation within HYSPLIT-STILT (Nehrkorn et al., 2010). WRF 
simulations were generated for March and April of 2019 and 2020 using a similar configuration described in Mallia 
et al. (2017, 2020). A detailed explanation behind the WRF model configuration can be found in the Supporting 
Information S1 (Text S3), while the WRF options selected can be viewed in Table S1 in Supporting Information S1.

2.4. Prior Emissions

A scaled version of the Vulcan 2010–2015 Version 3 emissions inventory (Gurney et al., 2020) was used as the 
prior emissions for the SLV. The Vulcan emissions inventory includes fossil fuel estimates of CO2 for sectors 
including: onroad, offroad, airport, electricity production, industrial, commercial, residential, and cement. 
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Emissions from Vulcan are provided on a 1-km grid for 2015 at a temporal frequency of 1-hr. For this study, 
Vulcan emissions were subset to cover northern Utah and regridded to a 0.01 × 0.01° grid. Since this study 
focuses on emissions for 2019 and 2020, emissions from Vulcan were scaled from 2015 to 2019. Emission 
changes from the Open-Data Inventory for Anthropogenic Carbon dioxide emission inventory (ODIAC; Oda 
et al., 2018), which covers 2000–2019, were used to scale Vulcan from 2015 to 2019. According to ODIAC, 
emissions slightly decreased across the SLV between 2015 and 2019 (−1.8%). Therefore, 2015 Vulcan emissions 
were scaled downwards by 1.8% for northern Utah. All grid cells within Vulcan for the SLV were scaled equally 
by −1.8%. The posterior emissions generated as part of the 2019 inverse analysis were used as the prior emis-
sions for 2020. More details behind the rationale on using the 2019 posterior as prior for 2020 are discussed in 
Section 2.6. The spatiotemporal length scales, which were used to construct the prior covariance matrix, were set 
as 2 days and 6-km, respectively. The spatiotemporal length scale values selected here were based on a variogram 
analysis carried out by Kunik et al. (2019) and Mallia et al. (2020) for SLC.

2.5. Biospheric Fluxes

Biospheric fluxes for northern Utah for 2019 and 2020 were obtained from the Solar- Induced Fluorescence 
(SIF) for Modeling Urban biogenic Fluxes product (SMUrF version 1; Wu et al., 2021). SMUrF estimates gross 
primary production using SIF and combines this information with predictive variables to estimate plant respira-
tion. Biospheric fluxes from SMUrF are natively gridded on a 5-km mesh that spans across Utah and is available 
from 2015 through July of 2020. Like the anthropogenic emissions, biospheric fluxes from SMUrF were regrid-
ded to a 0.01 × 0.01° mesh to match the gridding of the HYSPLIT-STILT footprints.

2.6. Study Design

The first step of this analysis was to generate a prior emission estimate for the COVID-19 lockdown that more 
accurately reflects emissions observed across the SLV. Given the large uncertainties surrounding emission inven-
tories at the local and regional scales (Gately & Hutyra, 2017), the first objective of this study was to optimize 
Vulcan emissions for a non-COVID-19 year by removing inherent emission errors. Posterior emissions from the 
2019 inversion were then used as the prior emissions for the COVID-19 lockdown analysis. Through this design, 
any corrections made to the emissions would reflect emission changes solely due to the COVID-19 lockdown, 
and not necessarily changes related to prior emission uncertainties. Therefore, a Bayesian inverse analysis was 
first carried out for 2019, and then for 2020. For the Bayesian inverse analysis, this study only considered after-
noon CO2 observations (12:00–18:00 LST), which corresponds to a time when the planetary boundary layer 
is fully developed and modeled atmospheric transport errors are less pronounced (Breon et al., 2015; Gerbig 
et al., 2008; Lauvaux et al., 2016; Mallia et al., 2020; Yadav et al., 2021).

All measurements from the UUCON and TRAX networks were averaged to 6-hourly time bins before being 
incorporated within the inverse analysis for 2019 and 2020. For the 2019 analysis, all data from March and April 
were included. The 2020 analysis only included observations from March 15th through the end of April, which 
coincided with the peak of the COVID-19 lockdown. For the 2019 analysis, all observations in March were used 
instead of limiting the data to the last two weeks of the month since the primary objective of the 2019 inverse 
analysis was to create a more accurate emission estimate that could be used as a prior for the 2020 COVID-19 
lockdown analysis. Emission corrections were applied to a domain bounded by −112.15 and −111.73° longitude, 
and 40.4 and 41° latitude. Modeled biospheric flux contributions were included as part of the background and 
were removed from the observed CO2 enhancement signal (𝐴𝐴 𝐴𝐴 ). Therefore, corrections were only applied to anthro-
pogenic sources of CO2 within the study domain following the methodology described in Mallia et al. (2020).

3. Results
3.1. Inverse Model Results 2019

For March–April 2019, seven UUCON sites were online and collecting CO2 measurements (including HDP). 
During this time, the TRAX Red (Green) line made 117 (78) transects collecting CO2 across the SLV during the 
afternoon hours (1800-0000 UTC).

The SLV exhibited significant spatiotemporal gradients in CO2 during March and April of 2019 according to the 
TRAX measurements (Figure 2a). The highest CO2 enhancements above background (dCO2) were observed in 
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downtown SLC, with values ranging between 10 and 25 ppm. As the TRAX Red line turns to the south, dCO2 
decreased by ∼15 ppm and plateaued throughout the middle of the SLV with dCO2 values ranging between 4 and 
10 ppm. As the TRAX Red line veered to the southwest corner of the SLV, dCO2 concentrations decreased again 
by 4 ppm. The northern part of the SLV is primarily dominated by emissions from traffic, electricity generation 
from 4 local power plants, industrial sources, and commercial activity (Figure 3) and has the highest emission 
rates (Figure 4a). The middle of the SLV is primarily composed of major roadways such as I-15, I-215, and I-80, 
along with other heavily trafficked non-highway roads. This region also has some commercial and industrial 
activity (Figure 3). The southwest corner of the SLV primarily consists of residential communities and has the 
lowest emissions relative to the rest of the valley (Figure 4a).

While the highest CO2 enhancements in downtown SLC can be partially explained by the juxtaposition of trans-
portation, commercial, and industrial activity, the TRAX Red Line also runs through the middle of heavily traf-
ficked roads surrounded by multi-story buildings in this part of the valley. It is suspected that the exceptionally 
high CO2 concentrations measured across downtown SLC are being enhanced by undiluted vehicle tail pipe 
emissions (Mallia et al., 2020; Mitchell, Lin, et al., 2018). Such effects are not accounted for within mesoscale 
atmospheric models (Mallia et al., 2020). Therefore, TRAX Red and Green line measurements in downtown SLC 
were excluded from the inverse analysis. The observations not included in the inverse analysis are grayed out in 
Figure 2a.

The first step of the 2019 analysis was to compare simulated and observed CO2 concentrations at the meas-
urement sites located throughout the SLV (UUCON  +  TRAX) during the afternoon. For this comparison, 
model-simulated CO2 concentrations utilized emissions from the prior emission inventory (Figure  3a). The 
majority of dCO2 was sourced from emissions within the SLV (>90%). Biospheric contributions of dCO2 
were  minimal and only accounted for 8% of the total dCO2. Afternoon biospheric fluxes from March to April 
averaged around −0.88 μmol m −2 s −1. Limited contributions from biospheric fluxes in the SLV, also found in 
previous work (Strong et al., 2011), are due to relatively limited biological activity during the early spring. The 
SLV is also located in a semi-arid environment, with the West Desert being located toward the prevailing wind 
direction (west).

Figure 2. Afternoon-averaged dCO2 along the TRAX Red line for March through April 2019. (a) Observed and 
model-simulated dCO2 using the (b) prior and (c) posterior emissions. The color and height of the colored lines is 
proportional to the magnitude of dCO2. The gray shaded lines for dCO2 correspond to downtown SLC. dCO2 concentrations 
in downtown SLC were not included as part of the inverse analysis.
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Like the observed dCO2 concentrations along the TRAX Red line, simulated dCO2 decreased from north to south, 
with the highest concentrations being co-located with downtown SLC (Figures 2a and 2b). While the highest 
simulated dCO2 was in downtown SLC, these values were much smaller relative to the observed enhancements 
by a factor of 1.6. As described earlier, it is suspected that the observed dCO2 signal in this part of the valley is 
partially explained by undiluted tail pipe emissions. Like the observations in Figure 2a, modeled concentrations 
of dCO2 were grayed out in Figures 2b and 2c. Modeled dCO2 remained elevated through the middle of the 
valley, like the observations (Figures 2a and 2b). Overall, simulated concentrations of CO2 were about ∼3 ppm 
higher than the observed dCO2 signal in the middle of the valley (relative bias = +30%). Simulated dCO2 sharply 
drops off, like the observations, as the TRAX Red Line veered toward the southwest corner of the SLV. Here, 
model-observation differences were minimal (<1 ppm, Figures 2a and 2b). On average, TRAX simulated dCO2 
were 1.74 ppm higher than observed enhancements, even when excluding downtown data (Figure 5a). A similar 
model bias was also observed at many of the UUCON sites (bias = +0.9; Table 1).

All the observations described above, the prior emissions inventory (Figure 4a), model data, including simulated 
CO2 concentrations and HYSPLIT-STILT footprints (Figure 4b), were incorporated within a Bayesian inverse 
analysis. After running the inverse analysis, there was a downward adjustment of afternoon emissions across the 
SLV (posterior–prior). The largest adjustments were centered across the northern part of the valley, and gradually 
decreased toward the south (Figures 4c and 4d). The spatial distribution of absolute emission adjustments were 
likely driven by the large observation-model differences in CO2, particularly along the northern segment of the 
TRAX Red line and at the SUG and WBB sites. On average, the afternoon-averaged emissions from the prior 
were reduced by 26% (159 tC hr −1). 48.65% of the emission adjustments were applied to the transportation sector, 
while 33.1% of the emission adjustments were allocated to the industrial sector (Table 2). The remaining 18.3% 
of adjustments were applied to the electrical generation and “other” sectors.

HYSPLIT-STILT simulations of CO2 were generated using the posterior emissions (Figure  2c). Unsurpris-
ingly, using the posterior emissions reduced modeled dCO2 across much of the SLV. Previously, modeled dCO2 

Figure 3. Anthropogenic CO2 emissions for the Salt Lake Valley (SLV) from the (a) transportation, (b) industrial, (c) 
electrical power generation, and (d) other sectors. Emissions are in units of μmoles m −2 s −1. Each panel also includes the 
sector contribution of CO2 for the entire SLV as a percentage. The color scaling is capped at 10 μmol m −2 s −1.
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concentrations in the middle of the SLV were overestimated by 30%. After running the inverse analysis, and 
when using the posterior emissions, modeled biases across this part of the valley were reduced significantly. On 
average, model-observation mismatches of dCO2 along the TRAX Red Line were small, with an average bias of 
−0.28 ppm and a correlation of r = 0.85 (Figure 5a). CO2 simulations at the UUCON sites also observed smaller 
biases, with most sites reporting smaller or in some cases, negative biases after applying the posterior emission 
adjustment (Table 1).

Figure 4. (a) Anthropogenic CO2 emissions (μmoles m −2 s −1) estimated by the prior, (b) HYSPLIT-STILT footprints for all 
receptors (log10[ppm/μmoles m −2 s −1]), excluding receptors along the TRAX lines in downtown SLC, (c) anthropogenic CO2 
emission adjustments after running the inverse analysis, and (d) anthropogenic CO2 emission adjustments as a percentage for 
each grid cell. All panels are averaged for the afternoon (1800-0000 UTC) for March through April 2019.

Figure 5. Scatter plots of afternoon-averaged observed and modeled dCO2 along the TRAX red line for (a) March–April 
2019 and (b) March 15th–April 2020. The black (red) circles represent comparisons between the observations and simulated 
dCO2 using the prior (posterior) emissions inventory.



Journal of Geophysical Research: Atmospheres

MALLIA ET AL.

10.1029/2023JD038686

9 of 15

The posterior emission inventory generated as part of this analysis was used 
as the prior for the 2020 COVID-19 lockdown analysis.

3.2. Inverse Model Results 2020

Between the second week of March through the end of April, traffic activity 
across Salt Lake County decreased by ∼30% according to the Utah Depart-
ment of Transportation (UDOT; Figure 6a) due to the COVID-19 lockdown. 
The lowest traffic levels were detected during the first week of April (−38%) 
and gradually rebounded through the end of April. Unfortunately, there 
was limited activity data available that described changes in other emission 
sectors such as the industrial and electricity production sectors.

Like 2019, CO2 concentrations along the TRAX Red Line exhibited signifi-
cant spatial variability. dCO2 were highest near downtown SLC, and decreased 
across the middle of the valley, before dropping to near-background levels in 
the southwest corner of the valley (Figure 6b). Relative to 2019, dCO2 along 

the TRAX Red Line was lower by 2 ppm. Differences in dCO2 for 2020 versus 2019 were greatest near downtown 
SLC (−5 ppm). Differences between 2019 and 2020 were lower in the middle part of the SLV (−1 to 2 ppm), 
and nearly indistinguishable across the southwest corner of the valley. This result can be explained by downtown 
SLC's concentration of commercial activity, which likely observed a notable shift of the commuting workforce 
to furlough or remote work during the COVID-19 lockdown. A similar difference was also observed along the 
TRAX Green Line when comparing 2019 and 2020 (Figure 6c). Like the TRAX Red Line, CO2 measurements 
along the Green Line were lower by ∼3 ppm, with differences as large as 5 ppm near downtown SLC.

Two of the sites (RPK & IMC) were unavailable during the spring. However, HDP, SUG, WBB,  and DBK 
sites were operational during the COVID-19 lockdown. There were also a limited number of TRAX transects 
during the final week of March. Nonetheless, the TRAX car was in operation during other times in March and 
throughout all of April, and made 118 transects along the Red Line, and 29 along the Green Line. From March 
15th to April 30th, TRAX measurements were available on 22 of 45 possible days during the afternoon.

Prior to running our inversion, model-simulated dCO2 was overestimated across much of the SLV (Figures 7a 
and 7b). These simulations used the posterior emissions estimated from the 2019 inverse analysis (Figure 8a). 
Like 2019, biospheric flux contributions were small, and accounted for less than 10% of the total dCO2 signal. 
Afternoon-averaged CO2 uptake from the biosphere was 25% less relative to 2019 (−0.68 μmol m −2 s −1). On 
average, simulated dCO2 along the TRAX Red Line were overpredicted by 1.46 ppm when excluding downtown 
data (Figures 7a and 7b). dCO2 concentrations were overpredicted by ∼2 ppm across the middle of the SLV, while 
the southwest corner of the SLV observed smaller overestimates (∼1 ppm). dCO2 was also overpredicted at the 
UUCON sites during the COVID-19 lockdown period, with biases ranging between +3.2 and +4 ppm (Table 1).

Results from the COVID-19 lockdown inversion indicated a 20% (90.5 tC hr −1) reduction in emissions across 
the SLV between March 15th through April 30th (Figures 8c and 8d) during the afternoon. Prior to running the 
inverse analysis for 2020, the SLV study domain emitted 453.1 tC hr −1 on average, while the inverse analysis 
reduced afternoon-average emissions to 362.4 tC hr −1. The largest reductions were confined to the northern part 
of the SLV, with emission reductions gradually decreasing to the southwest (Figure 8c). The largest emission 

Site Prior 2019 Posterior 2019 Prior 2020 Posterior 2020

DBK 2.52 1.56 3.46 3.43

IMC −2.05 −3.19 – –

RPK 0.23 −1.17 – –

SUG 3.18 0.67 4.03 3.02

WBB 0.62 −0.65 3.21 2.53

mean 0.90 −0.56 3.57 2.99

Note. Averaging periods only includes the afternoon hours for March and 
April. The 2020 analysis only includes data starting from the beginning of the 
lockdown period (March 15th) thought the end of April.

Table 1 
Modeled dCO2 Bias (ppm) for All UUCON Sites Using Our Prior and 
Posterior Emission Estimates for 2019 and 2020

Sector 2019 2020 (6-km) 2020 (3-km) 2020 (9-km) 2020 (1-day) 2022 (3-day)

Electrical 2.8% 3.3% 3.2% 3.6% 3.3% 3.3%

Industrial 33.1% 38.2% 42.0% 36.5% 38.2% 38.5%

Transportation 48.7% 44.0% 41.0% 45.2% 44.0% 43.8%

Other 15.5% 14.5% 13.9% 14.8% 14.5% 14.5%

Note. The last four columns also represent the inverse analysis carried out for 2020 but using a spatial correlation length scale 
of 3 and 9-km, and temporal correlation timescale of 1 and 3 days.

Table 2 
Emission Changes Partitioned by Sector for 2019 and 2020 Inversions
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reductions were associated with major industrial point sources across the northern part of the valley, the Salt Lake 
International Airport, and along major roadways such as I-15, 80, and 215. For the 2020 inverse analysis, 38.2% 
(34.4 tC hr −1) of the emission reductions were applied to the industrial sector, while 43.95% (39.8 tC hr −1) of the 
emission reductions were allocated to the transportation sector (Table 2). ∼18% (16.3 tC hr −1) of the remaining 

Figure 6. (a) Average vehicles per week along I-15 for the first 6 months of 2019 and 2020 from UDOT. Afternoon-averaged 
dCO2 (1800-0000 UTC) for March 15th–30 April 2019 and 2020 along the (b) TRAX Red and (c) Green lines. The distance 
along the TRAX lines (x axis) starts in the northern-most location of each train line. The gray shaded lines in panel (b and c) 
denotes sections of the TRAX Red and Green lines that run through downtown SLC, which were not included in the inverse 
analysis.

Figure 7. Afternoon-averaged dCO2 along the TRAX Red line for March 15th though April 2020. (a) Observed and 
model-simulated dCO2 using the (b) prior and (c) posterior emissions. The color and height of the colored lines is 
proportional to the magnitude of dCO2. The gray shaded lines for dCO2 correspond to downtown SLC. dCO2 concentrations 
in downtown SLC were not included as part of the inverse analysis.
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emission reductions were from the electrical generation and “other” sectors (Table 2). The sector adjustment 
percentages between the 2019 and 2020 were similar (Table 2), even though the adjustments in emissions for each 
year were being driven by different mechanisms (changes in 2020 are presumably caused by the COVID-19 lock-
down). For both 2019 and 2020, the emission reductions were primarily centered across the northern part of the 
SLV (Figures 4c and 8c). It is hypothesized that the similarity between 2019 and 2020 is a result of the northern 
part of the SLV (a) being co-located with the highest emissions, (b) an area where model-observation mismatches 
are the largest, and (c) having better sampling relative to other areas in the SLV. It is also worth emphasizing that 
the emission reductions applied to the transportation sector could be underestimated, while reductions applied to 
other sectors could be overestimated. During the COVID-19 lockdown, UDOT-estimated traffic activity saw an 
average decrease of ∼30% between March 15th and April 30th. The transportation sector makes up 51% of the 
emissions across the SLV. Using the UDOT traffic information as a proxy, a ∼15% reduction in overall emissions 
due to traffic would be expected, which would represent ∼75% of the modeled 20% emission reduction. Accord-
ing to the inverse analysis, the fraction of the total adjustment attributed to transportation was ∼44%. Regardless, 
both analyses indicate that sectors unrelated to transportation likely had non-negligible reductions in CO2 emis-
sions during the first COVID-19 lockdown.

Model simulations of CO2 were generated using the posterior emissions created from the inverse model analysis. 
Overall, simulated dCO2 concentrations were improved across much of the SLV (Figure 7c). Prior to running 
the inverse model analysis, dCO2 was overpredicted by 1.46 ppm along the TRAX Red Line (Figure 5b). After 
running the inverse analysis, this overestimate was reduced by ∼50% (bias = +0.74 ppm; Figure 5b). The TRAX 
Green Line (not shown) also observed a ∼50% improvement in modeled biases. Some of the modeled overpre-
dictions were eliminated for the UUCON sites (Table 1), albeit an overprediction of ∼3 ppm was still present.

A series of sensitivity analyses were carried out to determine how the spatiotemporal correlation parameters lx 
and lt, which were used to construct the prior covariance matrix, would impact emission adjustments. Overall, 

Figure 8. (a) Anthropogenic CO2 emissions (μmoles m −2 s −1) estimated by the prior, (b) HYSPLIT-STILT footprints for all 
receptors (log10[ppm/μmoles m −2 s −1]), excluding receptors along the TRAX lines in downtown SLC, (c) anthropogenic CO2 
emission adjustments after running the inverse analysis (μmoles m −2 s −1), and (d) anthropogenic CO2 emission adjustments as 
a percentage for each grid cell. All panels are averaged for the afternoon (1800-0000 UTC) for March 15th through April 2020.
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varying lx between 3 and 9-km, and lt between 1 and 3 days, resulted in emission reductions that ranged between 
11% (44.9  tC hr −1) and 24% (108.8  tC hr −1) (Figure 9). Emission reduction partitioning between each sector 
remained relatively unchanged between the different model configurations (Table 2). These results suggest that 
there is some underlying uncertainty in the inverse analysis given that the “true” spatiotemporal correlation value 
is unknown and is difficult to measure. A more detailed description this analysis can be found in the Supporting 
Information S1 (Text S4).

4. Summary
A Bayesian Inverse analysis was carried out to determine how the COVID-19 lockdown impacted CO2 emis-
sions across the SLV. This study leveraged two different CO2 monitoring networks, which included a stationary 
CO2 monitoring network and mobile measurements of CO2 collected on the top of a light rail train that was 
running semi-continuously during the COVID-19 lockdown. While several studies have already explored how the 
COVID-19 lockdown impacted urban GHG emissions, there has been limited work determining whether changes 
in CO2 for medium-sized cities like SLC are detectable. Furthermore, the COVID-19 lockdown measures were 
less stringent in SLC (Hallas et al., 2021), which would have presumably lowered CO2 emission reductions in 
SLC relative to other cities. Cities, such as Paris and San Francisco observed much larger reductions in CO2 
emissions that ranged between 30% and 50% (Lian et al., 2022; Nalini et al., 2022; Turner et al., 2020; Yadav 
et al., 2021), where it would be easier to detect emission changes with a CO2 monitoring network. Finally, there 
has been limited work on determining whether alternative CO2 measurement strategies, such as mobile observa-
tions, can detect urban-scale emission changes.

Large uncertainties often exist within emission inventories, especially at the urban scale. One unique aspect of 
this work is that prior to running an inverse analysis for the COVID-19 lockdown, emissions were constrained 
for 2019 to remove inherent biases within the prior emission inventory. These emissions were then used as the 
prior emissions for the COVID-19 lockdown analysis. Here it is assumed that emission changes between 2019 

Figure 9. Anthropogenic CO2 emission adjustments (μmoles m −2 s −1) after running an inverse analysis using a spatial length 
scale of (a) 3 and (b) 9-km and a temporal length scale of (c) 1 and (d) 3 days. All panels are averaged for the afternoon 
(1800-0000 UTC) for March 15th through April 2020.
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and 2020, in the absence of COVID-19, would have been small. An inverse model analysis was then carried out 
for the COVID-19 lockdown period between March 15 to 30 April 2020. Overall, average emissions across the 
SLV were adjusted downward by ∼20% during the afternoon (90.5  tC hr −1). The largest emission reductions 
were confined to the northern part of the SLV, near downtown SLC, where emission reductions were as large as 
50%. Downtown SLC is co-located with significant commercial activity with commuting workers, which would 
have been most impacted by the COVID-19 lockdown. It is worth noting that the COVID-19 emission reductions 
estimated in SLC are lower than other cities such as Los Angeles, Paris, the Bay Area (Lian et al., 2022; Nalini 
et al., 2022; Turner et al., 2020; Yadav et al., 2021). It is suspected that less stringent lockdown measures in SLC 
relative to other cities across the U.S were the driving factors behind the smaller emission reductions.

The largest fraction of afternoon emission reductions were applied to the transportation (43.95%; 39.8 tC hr −1) 
and industrial sectors (38%; 34.4 tC hr −1). It is also worth emphasizing that it is difficult to quantify sector-level 
emission reductions, even with semi-continuous mobile measurements like TRAX. For example, it is suspected 
that the fraction of emission reductions from the transportation sector could reach 75% (67.9 tC hr −1) based on 
traffic activity data collected by UDOT. However, it is difficult to ascertain specific reductions by sector without 
activity data for other emission sectors. For example, industrial activity data was not available during this anal-
ysis. Emission adjustments were also highly sensitive to the spatiotemporal correlation length scale parameter 
with emission reductions ranging between 11% and 25% (44.9 tC hr −1 to 108.8 tC hr −1) depending on the length 
scale select.

While CO2 monitoring methods can track large-scale decarbonization as suggested by the analysis carried out 
here and in other studies, linking emission changes to specific emission sectors remain challenging. Activity data 
at a high temporal resolution for industrial sources, which can account for a large fraction of urban CO2 emis-
sions, is challenging to obtain. Therefore, CO2 monitoring networks that specifically target industrial emission 
sources are sorely needed. Research is also needed to quantify to what extent can carbon monitoring networks 
track decarbonization efforts. Decarbonization will likely occur gradually; therefore, it will be necessary to deter-
mine the “limit of detection” of current CO2 monitoring strategies.

Ultimately, the analysis carried out here suggests that inverse models, combined with stationary and mobile CO2 
observations, can track modest emission reductions in medium-sized cities, and to some degree, geographically 
identify emission reductions at the city-scale. In situ urban CO2 observation networks and new satellite-based 
measurements approaches will likely play a pivotal role toward monitoring decarbonization efforts in cities across 
the globe.

Data Availability Statement
Biospheric fluxes for northern Utah were estimated using the SMUrF data set, which is publicly available at the 
Oak Ridge National Lab data base (Wu, 2021). Anthropogenic emissions for the northern Utah were obtained 
from the Vulcan emission inventory, which is downloadable from the Oak Ridge National Lab database (Gurney 
et al., 2019). The HYSPLIT-STILT v5.0.0 software was used to generate the spatiotemporal influence matrix for 
each measurement (NOAA ARL, 2020). Meteorological data used to drive HYSPLIT-STILT backward trajecto-
ries were generated by output from the Weather Research and Forecast model v4.2 software available at NCAR: 
https://www2.mmm.ucar.edu/wrf/users/download/get_source.html (Skamarock et al., 2019). Utah traffic data for 
2019 and 2020 is publicly available on the Utah Department of Transportation's webpage (UDOT, 2023). TRAX 
and UUCON CO2 data is hosted by the University of Utah and is publicly available at https://air.utah.edu (Lin 
et al., 2018).
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